MP Resulting in Autophagic Cell Death of Microglia through Zinc Changes against Spinal Cord Injury
نویسندگان
چکیده
Methylprednisolone pulse therapy (MPPT), as a public recognized therapy of spinal cord injury (SCI), is doubted recently, and the exact mechanism of MP on SCI is unclear. This study sought to investigate the exact effect of MP on SCI. We examined the effect of MP in a model of SCI in vivo and an LPS induced model in vitro. We found that administration of MP produced an increase in the Basso, Beattie, and Bresnahan scores and motor neurons counts of injured rats. Besides the number of activated microglia was apparently reduced by MP in vivo, and Beclin-1 dependent autophagic cell death of microglia was induced by MP in LPS induced model. At the same time, MP increases cellular zinc concentration and level of ZIP8, and TPEN could revert effect of MP on autophagic cell death of microglia. Finally, we have found that MP could inhibit NF-κβ in LPS induced model. These results show that the MP could result in autophagic cell death of microglia, which mainly depends on increasing cellular labile zinc, and may be associated with inhibition of NF-κβ, and that MP can produce neuroprotective effect in SCI.
منابع مشابه
Cellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury
Introduction: Spinal cord injury (SCI) following traumatic events is associated with the limited therapeutic options and sever complications, which can be partly due to inflammatory response. Therefore, this study aims to explore the role of inflammation in spinal cord injury. The findings showed that the pathological conditions of nervous system lead to activation of microglia, astrocyte, neut...
متن کاملSalidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation
Spinal cord injury (SCI) is a severe neurological disease; however, few drugs have been proved to treat SCI effectively. Neuroinflammation is the major pathogenesis of SCI secondary injury and considered to be the therapeutic target of SCI. Salidroside (Sal) has been reported to exert anti-inflammatory effects in airway, adipose and myocardial tissue; however, the role of Sal in SCI therapeutic...
متن کاملNeuroprotective effects of atomoxetine against traumatic spinal cord injury in rats
Objective(s):Spinal cord injury (SCI) often causes serious and irreversible neurological deficit leading to disability or impairment of normal physical activity. Atomoxetine, a selective norepinephrine transporter (NET) inhibitor has gained much attention in the field of the neurodevelopmental disorder, but its effect on SCI has not been evaluated. The present study has been undertaken to inves...
متن کاملHigh-dose corticosteroids after spinal cord injury reduce neural progenitor cell proliferation.
We assessed whether a clinical dose of the anti-inflammatory drug methylprednisolone (MP) given to adult mice acutely after spinal cord injury (SCI) influences spinal cord or hippocampal progenitor cells. Mice underwent a thoracic dorsal hemisection of the spinal cord and received 30 mg/kg MP immediately and 24 h post-lesion. 5-Bromo-2-deoxyuridine (BrdU) was administered after lesion either ac...
متن کاملMechanisms of spinal cord injury regeneration in zebrafish: a systematic review
Objective(s):To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016